Automating deduction in non-classical logics: Signed Resolution for Many-Valued Logics

Luís M. Augusto

Universidade Aberta

MEMC, 2014

Luís M. Augusto Signed resolution for many-valued logics

A B > A B >

Presuppositions

• Logical systems and classical logic:

- Logical systems:
 - truth-functionality, interpretation, propositional logic, FOL, etc.
- Classical logic (CL):
 - CL syntax, CL semantics, etc.
- Normal forms and clausal logic:
 - PNF, CNF, DNF, etc.

• Automated theorem proving (ATP):

- Herbrand's theorem (see, e.g., Chang & Lee, 1973):
 - Herbrand universe, skolemization, ground terms, semantic trees, etc.
- Resolution calculus (see, e.g., Leitsch, 1997) :
 - Binary resolution, factoring, unification, etc.

= 990

Outline

- Motivation
 - ATP
 - Many-valued logics
- 2 The SAT problem and the resolution principle
 - The SAT problem
 - Herbrand's theorem
 - The resolution principle
- 3 The MVSAT problem
 - Many-valued logics: Fundamental metatheoretical notions
 - \bullet The many-valued logical systems L_3 and L_{\varkappa}
 - The MVSAT problem
- 4 Results: Signed resolution for many-valued logics
 - Notation and fundamental notions
 - Theorems

물 문 수 문 문 문 문 문

ATP Many-valued logics

Automated theorem proving (ATP)

Given a formula (conclusion) A and a – possibly empty – set of formulae (premises) Γ in a logical system S, one often wishes to find answers for the questions

- Deduction problem (DP): Γ⊢_S A?, i.e., whether A is a theorem, or a logical consequence of Γ, in S (i.e., ⊢_S Γ → A, or ⊢_S A for Γ = Ø).
- Oecision problem: is DP decidible (i.e., is there an algorithm for PD): Yes or No?
 - Answers:
 - S = Classical propositional logic: YES
 - S = Classical FOL: NO (Church-Turing theorem) (BUT...)
- ATP: is the algorithm for PD fully automatizable, namely in a computer program?

Motivation

The SAT problem and the resolution principle The MVSAT problem Results: Signed resolution for many-valued logics Main result

ATP Many-valued logics

Many-valued logics: Importance

Many-valued logics

- have many practical applications in pure and applied mathematics, namely in computer science. E.g.,
 - switching theory
 - logic programming
 - hardware verification
 - natural language processing
- generalize CL, reason why they are important tools to investigate into fundamental aspects of classical systems. E.g.,
 - verification of the independence of axioms of CPL

(日本)

The SAT problem Herbrand's theorem The resolution principle

Validity and unsatisfiability

Definition (*validity*) Let Γ be a set of formulae and A a formula entailed from Γ ; we say that a formula A is *valid* iff there is no interpretation assigning the value true to all the members of Γ (the premises) and false to A (the conclusion), and we write $\Gamma \models A$ ($\models A$, if $\Gamma = \emptyset$). A formula is said to be *invalid* iff it is not valid.

*

Theorem (*deduction theorem*). $\Gamma \models A$ iff $\Gamma \cup \{\neg A\}$ is unsatisfiable.

《曰》 《母》 《문》 《문》 도님

The SAT problem Herbrand's theorem The resolution principle

DP and (un)satisfiability

Theorem (deduction theorem). Given a set of formulae $\Gamma = \{B_1, ..., B_n\}$ and a formula A, A is a logical consequence of Γ iff the formula $((B_1 \land ... \land B_n) \rightarrow A)$ is valid. Equivalently, a formula A is a logical consequence of a set of formulae $\Gamma = \{B_1, ..., B_n\}$ iff the formula $(B_1 \land ... \land B_n \land \neg A)$ is unsatisfiable.

• In an adequate logical system, this allows us to test for DP via the semantic notion of (un)satisfiability: A is a logical consequence of Γ iff the negation of $((B_1 \land ... \land B_n) \rightarrow A)$ is *refuted*, i.e., iff $\nvDash \neg (\Gamma \rightarrow A)$, where $\Gamma = \bigwedge_i B_i \in \Gamma$.

The SAT problem Herbrand's theorem The resolution principle

SAT

Definition (the Boolean satisfiability problem, or SAT). Given a formula $A(x_1,...,x_n)$, it is asked if A can be evaluated to T by some assignment of the truth values T or F to the x_i , $1 \le i \le n$. We say that a (propositional) formula $A(x_1,...,x_n)$ is satisfiable if truth values can be assigned to its variables x_i in such a way as to make A true. Otherwise, A is said to be unsatisfiable.

ヘロト (同) (ヨト (ヨト)目目 うので

The SAT problem Herbrand's theorem The resolution principle

Herbrand's theorem

Theorem (*Herbrand*, 1930 - version I). A set \mathscr{C} of clauses is unsatisfiable iff corresponding to every complete semantic tree of \mathscr{C} , there is a finite closed semantic tree.

*

$(\)$

Theorem (*Herbrand*, 1930 - version II). A set \mathscr{C} of clauses is unsatisfiable iff there is a finite unsatisfiable set \mathscr{C}' of ground instances of \mathscr{C} .

イロト イポト イヨト イヨト

The SAT problem Herbrand's theorem The resolution principle

H-unsatisfiability

Theorem A set \mathscr{C} of clauses is unsatisfiable iff \mathscr{C} is false under all the H-interpretations, i.e., iff it is *H*-unsatisfiable.

A semantic tree allows us to check H-unsatisfiability (cf. Herbrand's theorem, version 1).

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

The SAT problem Herbrand's theorem The resolution principle

The empty clause

Theorem A formula *F* is unsatisfiable iff it is possible to derive a contradiction from *F*, i.e., $F \models G \land \neg G$.

Let $G \land \neg G = \Box$, where \Box denotes the empty clause. Then $\Box \equiv \bot$, because the empty clause has no literal that can be satisfied by any interpretation. Therefore, if we can obtain \Box from a set of clauses \mathscr{C} , then \mathscr{C} is unsatisfiable.

《曰》 《圖》 《문》 《문》 문법

The SAT problem Herbrand's theorem The resolution principle

The resolution principle

Theorem A resolvent $C = (C'_1 \lor C'_2) \sigma$ of two clauses $C_1 = C'_1 \lor L_1$ and $C_2 = C'_2 \lor \neg L_2$ is a logical consequence of $C_1 \land C_2$, i.e.,

$$\frac{C_1' \vee L_1 \quad C_2' \vee \neg L_2}{(C_1' \vee C_2') \sigma}, \qquad \sigma = mgu(L_1, L_2)^*.$$

* For FOL; in the propositional case, a resolvent is obtained iff $L_1 = L_2$.

Definition A (resolution) deduction of C from a set of clauses \mathscr{C} is a finite sequence $C_1, C_2, ..., C_k$ of clauses such that each C_i either is a clause in \mathscr{C} or a resolvent of clauses preceding C_i , and $C_k = C$. We call the deduction of the empty set \Box from \mathscr{C} a refutation, or proof of \mathscr{C} .

The SAT problem Herbrand's theorem The resolution principle

Example 1

Let $\mathscr{C} = \{\neg P(x) \lor Q(x), P(f(a)), \neg Q(z)\}$. We apply binary resolution to this set of clauses:

1.
$$\neg P(x) \lor Q(x)$$

2. $P(f(a))$
3. $\neg Q(z)$
4. $Q(f(a))$ res. 1, 2; $\sigma = \{x \mapsto f(a)\}$
5. \Box res. 3, 4; $\theta = \{z \mapsto f(a)\}$

Note that $H_{\mathscr{C}} = \{a, f(a), f(f(a)), ...\}$ and $H(\mathscr{C}) = \{P(a), Q(a), P(f(a)), Q(f(a)), ...\}, H_{\mathscr{C}}$ and $H(\mathscr{C})$ denote the Herbrand universe and the Herbrand base of \mathscr{C} , respectively.

The SAT problem Herbrand's theorem The resolution principle

Example 1 (cont.)

Figure : Closed semantic tree for $\mathscr{C} = \{\neg P(x) \lor Q(x), P(f(a)), \neg Q(z)\}$. Note that $A(\mathscr{C}) = \{P(a), Q(a), P(f(a)), Q(f(a))\}, A(\mathscr{C}) \subseteq H(\mathscr{C}).$

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and $E_{\vec{N}}$ The MVSAT problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Interpretation and logical matrix

- An interpretation for some L^{Prop} = (F, O₁,..., O_m), where F is a set of formulae and O₁,..., O_m are finitary operations over F, can be provided by an interpretation structure

 1 = (A, f₁,..., f_m) where A is the range of semantic correlates of L^{Prop}.
- A logical matrix \mathfrak{M} is a pair (\mathfrak{A}, D) where \mathfrak{A} is an algebra similar to a propositional language \mathscr{L}^{Prop} and $D \subseteq \mathscr{A}$ is a non-empty subset of the universe of \mathfrak{A} with D the designated values of \mathfrak{M} .

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and $E_{\vec{N}}$ The MVSAT problem

Validity, tautologousness and contradictoriness in many-valued logics

The set D of designated values allows for a natural generalization of the classical notions of validity, tautologousness, and contradictoriness to the many-valued logics. E.g.,

Definition (validity in many-valued logics). Given a designated set $D \subset W, D \neq \emptyset$, we say that an inference is valid iff it preserves designated values, i.e.,

 $\Gamma \models_D A$ iff for every interpretation \mathscr{I} , whenever $val_{\mathscr{I}}(B) \in D$,

for all $B \in \Gamma$, $val_{\mathscr{I}}(A) \in D$.

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and $E_{\vec{N}}$ The MVSAT problem

▲冊▶ ▲目▶ ▲目▶ 目目 のQ@

Content of a logical matrix

 \bullet With each matrix ${\mathfrak M}$ there is associated a set of formulae

$$E(\mathfrak{M}) = \left\{ \phi \in F : h\phi \in D \text{ for any } h \in Hom\left(\mathscr{L}^{Prop}, \mathfrak{A}\right) \right\}$$

called the *content* of \mathfrak{M} , and for any such matrix \mathfrak{M} we define the relation $\models_{\mathfrak{M}}$ for any $X \subseteq F, \phi \in F$,

$$X \models_{\mathfrak{M}} \phi$$
 iff for every $h \in Hom\left(\mathscr{L}^{Prop}, \mathfrak{A}\right), h\phi \in D$

whenever $hX \subseteq D$.

• In fact, for any logical system S,

 $E(\mathfrak{M}_{S}) = \{\phi \mid \models_{S} \phi\} = TAUT(S)$

Motivation

The SAT problem and the resolution principle The MVSAT problem Results: Signed resolution for many-valued logics

Main result

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and E_\aleph The MVSAT problem

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

A criterion for many-valuedness

Proposition (*Malinowski, 1993*) A logical matrix $\mathfrak{M}_{n>2}$ determines a many-valued logic iff for *no* matrix \mathfrak{M}_2 for \mathscr{L}^{Prop} it is the case that

•
$$E(\mathfrak{M}_{n>2}) = E(\mathfrak{M}_2);$$

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and E_8 The MVSAT problem

▲冊▶ ▲目▶ ▲目▶ 目目 のQ@

Motivation The SAT problem and the resolution principle **The MVSAT problem** Results: Signed resolution for many-valued logics Main result

The finitely many-valued logic E_3

- Logical matrix: $\mathfrak{L}_3 = (\{T, I, F\}, \neg, \rightarrow . \land, \lor, \leftrightarrow, \{T\})$
- Truth tables:

• $E(\mathfrak{L}_3) \subsetneq E(\mathfrak{M}_2)$

Motivation

The SAT problem and the resolution principle The MVSAT problem

Results: Signed resolution for many-valued logics Main result Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and E_8 The MVSAT problem

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

The fuzzy (i.e. infintely many-valued) logic L_{\aleph}

- $\mathfrak{L}_{\aleph} = ([0,1], \neg, \rightarrow . \land, \lor, \leftrightarrow, 1 \text{ or } \varepsilon \in (0,1])$
- Truth functions: for all $x, y \in [0, 1]$,

$$x \to y = \begin{cases} 1 & \text{if } x \le y \\ 1 - x + y & \text{if } x > y \\ \neg x = 1 - x \end{cases}$$

Also:

 $x \lor y = max(x,y)$ $x \land y = min(x,y)$ $x \leftrightarrow y = 1 - |x - y|$

• $E(\mathfrak{L}_{\aleph}) \subsetneq E(\mathfrak{M}_2)$

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and E_8 The MVSAT problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Other relevant many-valued logics

- Finitely many-valued: B^I₃, B^E₃, K^S₃, K^W₃, P_n (n finite) (cf. Bolc & Borowik, 1992; Rescher, 1969)
- Infinitely many-valued:
 - Fuzzy logics: LG (Gödel logic), LΠ (product logic)
 - Also: P_n (n infinite) (cf. e.g., Rescher, 1969)
- These logics have quantified calculi: ex.: qL₃, qLG, etc.
- With some exceptions (e.g., qLΠ), they have adequate axiom systems.

Many-valued logics: Fundamental metatheoretical notions The many-valued logical systems E_3 and E_\aleph The MVSAT problem

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

MVSAT

• Satisfiability for a many-valued formula ϕ (MVSAT) can be expressed as

Is it ever the case that ϕ takes a truth value $x \in D$?

• The classical duality between validity and satisfiability is extended to many-valued logics in the following way: A formula ϕ is *D*-valid iff it is not \overline{D} -satisfiable, or, by defining sets D^+ abd D^- , $W = D^+ \cup D^-$, ϕ is D^+ -valid iff it is not D^- -satisfiable.

Notation and fundamental notions Theorems

Signed logic

- By always "marking" a many-valued formula with the truth value(s) that it takes or can take i.e., its *signal* we obtain *signed logic*.
- This formalism allows us to generalize the important classical notions of (in)validity and (un)satisfiability to the many-valued logics. As is well-known, a valuation in CL is indicated by P and ¬P; given W₂ = {T,F}, we can sign (i.e., give a sign to) P and ¬P as {T}[P] and {F}[P], respectively.
- This strategy allows the extension of classical bivalent reasoning to many-valued logics by signing many-valued formulae as $S[\phi]$ or $(W \setminus S)[\phi]$ (i.e., $\overline{S}[\phi]$), for a given $S \subseteq W$.

Notation and fundamental notions Theorems

Signed clausal logic (SCL)

- By allowing the building of CNFs, SCL allows the direct application of the resolution principle to many-valued logics. Just as in CL, in SCL
 - every signed formula ϕ is equivalent to a signed formula (expression) ϕ_1 in DNF and to a signed formula (expression) ϕ_2 in CNF;
 - $\neg \phi_1 \equiv \phi_2$ and $\neg \phi_2 \equiv \phi_1$;
 - $\bigwedge_{i=1}^{n} \overline{S}[A_i]$ is a refutation of $\bigvee_{i=1}^{n} S[A_i]$;
 - $\bullet\,$ a set of signed clauses ${\mathscr C}$ is unsatisfiable iff it is H-unsatisfiable.
- Thus, all that is required is a set of transformation rules for the translation of any signed formula into a signed formula in clausal form, i.e., a signed formula expression (SFE).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Notation and fundamental notions Theorems

Transformation rules (Baaz et al., 2001)

Definition Given a pair (ϕ, Φ) , where ϕ is a signed formula and Φ is a signed formula expression, $\phi \Longrightarrow \Phi$ is a transformation rule (TR). The rule is correct iff $\phi \equiv \Phi$ is valid.

• A propositional TR is an expression of the form

$$S[O(A_1,...,A_n)] \Longrightarrow \bigwedge_{i \in I} \bigvee_{j \in J} S_{ij} \left[A'_{ij}\right], \qquad A'_{ij} \in \{A_1,...,A_n\}.$$

• A quantifier TR is an expression of the form

$$S[(Qx)A(x)] \Longrightarrow \bigwedge_{i \in I} \left(\bigvee_{j \in J} (\exists x) S_{ij}[A(x)] \lor \bigvee_{k \in K} (\forall x) S_{ik}[A(x)] \right).$$

・ 同 ト ・ 日 ト ・ 日 日

 $\tilde{Q}(\mathscr{V}) \in \overline{S}$

Notation and fundamental notions Theorems

Translation into SCL

• For $\phi = S[O(A_1, ..., A_n)]$: • $DNF(\phi) := \bigvee_{v_1, ..., v_n \in W} \bigwedge_{i=1}^n \{v_i\}[A_i]$ $\tilde{O}(v_1,\ldots,v_n) \in S$ • $CNF(\phi) := \bigwedge_{V_1, \dots, V_n \in W} \bigvee_{i=1}^n \overline{\{v_i\}}[A_i]$ $\tilde{O}(v_1, \ldots, v_n) \in \overline{S}$ • For $\phi = S[(Qx)A(x)]$, \mathscr{V} is the distribution of ϕ : • $DNF(\phi) :=$ $\bigvee_{\emptyset \subset \mathscr{V} \subset W} ((\forall x) \mathscr{V}[A(x)] \land \bigwedge_{v_i \in \mathscr{V}} (\exists x) \{v_i\} [A(x)])$ $\tilde{Q}(\mathscr{V}) \in S$ • $CNF(\phi) :=$ $\land \ \ \, \bigotimes \subseteq \mathscr{V} \subset W \ \ \, \left((\exists x) \overline{\mathscr{V}}[A(x)] \lor \bigvee_{v_i \in \mathscr{V}} (\forall x) \overline{\{v_i\}}[A(x)] \right)$

글 문 소 글 문 (코)

Notation and fundamental notions Theorems

Example 2

We want to compute the CNF of $\{I\} [A \rightarrow_{L3} B]$. We compute the DNF of $\{T,F\} [A \rightarrow_{L3} B]$, i.e., $\bigvee \qquad (\{v_1\} [A] \land \{v_2\} [B])$ $v_1, v_2 \in \{T, I, F\}$ $v_1 \rightarrow v_2 \neq I$ The examination of the truth table gives us the DNF: $(\{T\} [A] \land \{T\} [B]) \lor (\{T\} [A] \land \{F\} [B]) \lor (\{I\} [A] \land \{T\} [B]) \lor (\{I\} [A] \land \{F\} [B]) \lor (\{F\} [A] \land \{F\} [B]) \lor (\{F\} [A] \land \{F\} [B])$

2 We now compute the CNF of $\{I\} [A \rightarrow_{L3} B]$:

 $(\{\mathrm{I},\mathrm{F}\}\,[\![A]\,\vee\,\{\mathrm{I},\mathrm{F}\}\,[\![B]\,)\,\wedge\,(\{\mathrm{I},\mathrm{F}\}\,[\![A]\,\vee\,\{\mathrm{T},\mathrm{I}\}\,[\![B]\,)\,\wedge\,(\{\mathrm{T},\mathrm{F}\}\,[\![A]\,\vee\,\{\mathrm{I},\mathrm{F}\}\,[\![B]\,)\,\wedge\,$

 $(\{\mathrm{T},\mathrm{F}\}\,[\![A]\!]\vee\{\mathrm{T},\mathrm{F}\}\,[\![B]\!])\wedge(\{\mathrm{T},\mathrm{I}\}\,[\![A]\!]\vee\{\mathrm{I},\mathrm{F}\}\,[\![B]\!])\wedge$

 $(\{T,I\}[A] \lor \{T,F\}[B]) \land (\{T,I\}[A] \lor \{T,I\}[B]) \equiv (\{T\}[A] \lor \{F\}[B]) \land (\{I\}[A] \lor \{I\}[B])$

Notation and fundamental notions Theorems

Example 3

The following are the correct TRs for qL_3 :

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 ののの

Notation and fundamental notions Theorems

Example 4

- Let $F = (\forall x) P(x) \rightarrow_{qL_3} (\exists y) P(y)$.
- In Example 2, we obtained the CNF of $\{I\}[A \rightarrow_{L3} B] \equiv (\{T\}[A] \lor \{F\}[B]) \land (\{I\}[A] \lor \{I\}[B]).$
- Thus,

 $\{I\}[F] \equiv (\{T\}[(\forall x) P(x)] \lor \{F\}[(\exists y) P(y)]) \land (\{I\}[(\forall x) P(x)] \lor \{I\}[(\exists y) P(y)]).$

 By applying the TRs for quantified formulae (Example 3) together with the laws of distributivity, skolemization, and simplifications, we obtain the equisatisfiable formula

${I}[F] \equiv_{sat}$

 $({T} [P(x)] \vee {F} [P(y)]) \wedge ({I} [P(a)]) \wedge ({T, I} [P(x)] \vee {I, F} [P(y)])$

Notation and fundamental notions Theorems

The signed SAT problem

A signed literal S[P] is satisfied exactly by the interpretations \mathscr{I} such that $val_{\mathscr{I}}(P) \in S$. An interpretation satisfies a signed clause iff it satisfies at least one of its signed literals, and it satisfies a signed CNF formula if it satisfies all its clauses. A signed CNF formula is satisfiable iff there exists at least one interpretation that satisfies all its signed clauses; otherwise, it is unsatisfiable. The signed empty clause $\{\}[C]$ is always unsatisfiable and the signed empty CNF formula is always satisfiable.

Notation and fundamental notions Theorems

Signed resolution: Main inference rules

• Signed binary resolution:

(R1)
$$\frac{S_1[P_1] \vee C_1 \quad S_2[P_2] \vee C_2}{\left((S_1 \cap S_2)[P_1] \vee C_1 \vee C_2\right)\sigma}, \quad \sigma = umg(P_1, P_2)$$

• Simplification rule:

(R2)
$$\frac{\{\}[P] \lor C}{C}$$

▲□ ▲ □ ▲ ■ ▲ □ ■ □ ● ● ● ●

Notation and fundamental notions Theorems

Signed resolution: refinements

• (R3)
$$\frac{S_{1}[P_{1}] \lor C_{1} \dots S_{m}[P_{m}] \lor C_{m}}{(C_{1} \lor \dots \lor C_{m})\sigma} \quad \text{if } \bigcap_{1 \le i \le m} S_{i} = \emptyset, \sigma = mgu(P_{1}, \dots, P_{m})$$

• (R4)
$$\frac{S_{1}[P_{1}] \lor C_{1} \dots S_{2}[P_{2}] \lor C_{2}}{(C_{1} \lor C_{2})\sigma} \quad \text{if } S_{1} \cap S_{2} = \emptyset, \sigma = mgu(P_{1}, P_{2})$$

• (R5)
$$\frac{S_{1}[P_{1}] \lor \dots \lor S_{m}[P_{m}] \lor C}{((S_{1} \cup \dots \cup S_{m})[P_{1}] \lor C)\sigma}, \quad \sigma = mgu(P_{1}, \dots, P_{m})$$

• (R6)
$$\frac{S_{1}[P_{1}] \lor C_{1} \dots S_{k}[P_{k}] \lor C_{k}}{(C_{1} \cup \dots \cup C_{k})\sigma}, \quad \bigcap_{1 \le i \le k} S_{i} = \emptyset, \sigma = mgu(P_{i}(1 \le i \le k))$$

• (R7)
$$\frac{S_{1}[P_{1}] \lor C_{1} \dots S_{k}[P_{k}] \lor C_{k}}{(C_{1} \cup \dots \cup C_{k})\sigma}, \quad \bigcap_{1 \le i \le k} S_{i} = \emptyset, \sigma$$

Notation and fundamental notions Theorems

Example 5

We apply signed resolution to $\{I\}[F]$ in order to solve MVSAT with respect to this formula (cf. Example 4):

$$C_1 = \{T\}[P(x)] \lor \{F\}[P(y)]$$

$$C_2 \{I\}[P(a)]$$

$$C_3 = \{T,F\}[P(x)] \lor \{I,F\}[P(y)]$$

$$C_4 \quad \{\} [P(a)] \lor \{F\} [P(y)]$$

$$C_5 \{T\} [P(x)] \lor \{\} [P(a)]$$

$$C_6 \{F\} [P(y_1)]$$

 $C_7 \{T\} [P(x_1)]$

$$C_7 \quad \{1\}[P(x_1)]\\C_8 \quad \Box$$

Res. $C_1 \theta$ and $C_2 \theta$, $\theta = \{x \mapsto a\}$ Res. $C_1 \lambda$ and $C_2 \lambda$, $\lambda = \{y \mapsto a\}$ C_4 , (R2) and renaming C_5 , (R2) and renaming Res. $C_6 \sigma$ and $C_7 \sigma$, $\sigma = \{x_1 \mapsto c, y_1 \mapsto c\}$, by (R3)

Notation and fundamental notions Theorems

Soundness of signed resolution

Theorem (soundness of the mvres calculus). For any set of clauses \mathscr{C} , if $\mathscr{C} \vdash_{mvres} \Box$, then \mathscr{C} is H-unsatisfiable.

*

Proof.

There is no interpretation that satisfies the empty clause. Thus, \mathscr{C} is unsatisfiable whenever \Box is derivable. Besides, given that \Box does not have any atom belonging to $A(\mathscr{C}) \subseteq H(\mathscr{C})$ that can be satisfied by an H-interpretation, if \Box can be derived from \mathscr{C} , then \mathscr{C} is H-unsatisfiable, namely through the subset $\mathscr{C}' \subseteq \mathscr{C}$, \mathscr{C}' is the set of ground clauses of \mathscr{C} .

Notation and fundamental notions Theorems

Completeness of signed resolution

Theorem (completeness of the mvres calculus). For any set of clauses \mathscr{C} , if \mathscr{C} is H-unsatisfiable, then $\mathscr{C} \vdash_{resmv} \Box$.

Proof.

The proof is by the notion of semantic tree.

(令) (金) (金) (金)

Notation and fundamental notions Theorems

Main theorem of signed resolution

\bigcirc

Let ϕ be any closed formula and let $\mathscr{C}_{\overline{U}\Phi}$ be the set of clauses of the clausal translation $\overline{U}\Phi$ of $v[\phi]$ for any truth value $v \in \overline{U}$, $U \subset W$. Then, all interpretations give a truth value $u \in U$ to ϕ iff $\mathscr{C}_{\overline{U}\Phi} \vdash_{mvres} \Box$, where *mvres* designates any of the rules (R1)-(R7).

Proof.

(⇒) The proof is by the completeness of *mvres*. (⇐) The proof is by the soundness of *mvres*.

《曰》 《圖》 《문》 《문》 도님

Notation and fundamental notions Theorems

- In Example 5, we obtained the result that F cannot take the truth value I in qL₃, i.e. {I} [F] is unsatisfiable in qL₃.
- A look at the matrix of qL_3 shows that $\overline{D} = \{I, F\}$.
- We therefore conclude that $\{T\}[F]$ is a valid formula in qL_3 .

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨヨ のへの

mvres algorithm

Given any formula ϕ in a many-valued logical system S with a set of truth values W:

- Obtain the clausal form DΦ of the signed formula v [φ], v ∈ D, where D ⊂ W is the set of designated values.
- **2** Obtain the set of clauses $\mathscr{C}_{\overline{D}\Phi}$ from $\overline{D}\Phi$.
- Our Apply the more calculus (rules (R1)-(R7)) to C_{DΦ} to test for unsatisfiability: if C_{DΦ} is unsatisfiable, then u[φ], u ∈ D, is a valid formula in S.

(日) (四) (日) (日) (日) (日) (日)

References 1

🛸 Bolc, L. & Borowik, P. (1992). Many-valued logics 1: Theoretical Foundations. Berlim, etc.: Springer.

🛸 Chang, C.-L. & Lee, R. C.-T. (1973). Symbolic logic and mechanical theorem proving. New York & London: Academic Press.

💊 Leitsch, A. (1997). *The resolution calculus*. Berlin, etc.: Springer.

🛸 Malinowski, G. (1993). *Many-valued logics*. Oxford: Clarendon Press.

📎 Rescher, N. (1969). *Many-valued logic*. McGraw-Hill.

물 이 제 물 이 물 물 물

References II

Baaz, M., Fermüller, C. G., & Salzer, G. (2001). Automated deduction for many-valued logics. In A. Robinson & A. Voronkov (eds.), *Handbook of automated reasoning*, vol. II (p. 1357-1400). Amsterdam: Elsevier / Cambridge, MA: MIT Press.